Q.P. Code: 16EC402						
Reg.	No:					
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR						
(AUTONOMOUS) B.Tech II Year I Semester (R16) Regular Examinations November 2017						
SWITCHING THEORY AND LOGIC DESIGN						
(Electronics and Communication Engineering)						
Time: 3 hours Max. Marks: 60						
(Answer all Five Units 5 X 12 = 60 Marks)						
UNIT-I						
1	а	Convert $(2AC5.D)_{16}$ to binary and then to octal.	6M			
	b	Explain how transfer of information will be done among registers.	6M			
		OR				
2	a	Simplify the following Boolean expressions				
		(i) $A'C' + ABC + AC'$	8M			
		(ii) $(A'+C)(A'+C')(A+B+C'D)$				
	b	Obtain the dual of the function $F = AB + (AC)'AB'C$	4M			
		UNIT-II				
3	а	Simplify the following Boolean expression using k-map				
-		$F(w,x,y,z) = \Sigma (1,3,7,11,15) + d (0,2,5)$	7M			
	b	Implement EX-OR gate using NOR gates only.	5M			
		OR				
4	а	Simplify using k-map to obtain a minimum POS expression	0.1			
		(A'+B'+C+D)(A+B'+C+D)(A+B+C+D')(A+B+C'+D')(A'+B+C+D') (A+B+C'+D)	9M			
	b	Realize the above result using the basic gates.	3M			
UNIT-III						
5	а	What is full adder? With necessary derivations implement the full adder	01			
		circuit.	6M			
	b	Design a combinational circuit with 4 inputs A,B,C,D. The output Y goes HIGH if and only if A and C inputs goes HIGH. Draw the truth table.	6M			
		Minimize the Boolean unction using K-map. Draw the circuit diagram.	01/1			
OR						
6	a	What is decoder? Explain 2 to 4 line decoder with truth table and draw the circuit.	6M			
	b	Explain 4:1 multiplexer with truth table and draw the logic diagram.	6M			
Page 1 of 2						

UNIT-IV

7	a	Convert the SR flipflop to T flipflop	7M
	b	Explain JK flipflop	5M
		OR	
8	a	Explain 4-bit ring counter with suitable sketches.	6M
	b	Design mod-6 ripple counter using T-flipflops.	6M
		UNIT-V	
9	a.	Differentiate Moore and Mealy circuit models	3M
	b.	Explain Moore model.	9M
		OR	
10		Realize the following four Boolean functions using PAL	
		(i) $F_1(w,x,y,z) = \Sigma m (0,1,2,3,7,9,11)$	
		(ii) $F_2(w,x,y,z) = \Sigma m (0,1,2,3,10,12,14)$	12M
		(iii) $F_3(w,x,y,z) = \Sigma m (0,1,2,3,10,13,15)$	I ZIVI
		(iv) $F_4(w,x,y,z) = \Sigma m (4,5,6,7,9,15)$	

*** END ***